Managing and Accessing Large Scientific Datasets

Mike Folk
NCSA/University of Illinois at Urbana-Champaign
mfolk@ncsa.uiuc.edu
Outline

• What are scientific data
• Describing and storing it
• Access it
• Cross-project collections
What are scientific data?
What are scientific data?

- A variety of data types and structures
- Large data structures
- Many objects
- Metadata: parameters, variables, legacy in a variety of forms
Requirements for Scientific Data

- Portability/sharability
 - Access software works on many machines
 - Applications can understand all relevant data
 - Data accessible on many machines
 - Sharable data across applications
 - Open standards

- Efficient storage and access
- Extensibility
- Software support
New challenges

• Bigger, faster machines and storage systems
 – massive parallelism, teraflop speeds
 – parallel file systems, terabyte storage

• Greater complexity
 – complex data structures
 – complex subsetting

• Remote and distributed access

• Legacy data
Describing and organizing scientific data
Abstraction Layers

Information for describing data exists at many levels

<table>
<thead>
<tr>
<th>Layer</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature/object</td>
<td>Image, data point, ERP component?</td>
</tr>
<tr>
<td>Science data model</td>
<td>Geometry, variable, field</td>
</tr>
<tr>
<td>Data structures</td>
<td>Array, mesh, index</td>
</tr>
<tr>
<td>Datatypes</td>
<td>Integer, string</td>
</tr>
<tr>
<td>Physical format</td>
<td>ASCII text, native binary, IEEE</td>
</tr>
<tr>
<td>Storage model</td>
<td>Raw file, collection, database</td>
</tr>
</tbody>
</table>
Science data models

• Data
 – Independent variables
 – Dependent variables, fields

• Context
 – Parameters
 – Spatiotemporal context -- topology, geometry, time
 – Relationships and dynamics
 – Provenance
Data structures

- Simple aggregates (array, table)
- Compound aggregates
 - Grid (regular, irregular, multi-resolution)
 - Sequence of records (extendable table/array)
 - Random access structure (hash table, tree)
 - Index structures (multi-view, random access)
 - Other aggregates (list, stack, queue)
- Other organizational structures
 - groups
 - attributes
See “Terra’s Orbit” at http://terra.nasa.gov/Gallery/browse.php3 for an animation that illustrates a swath.
See “MOPITT Scanning Swath” at http://terra.nasa.gov/Gallery/browse.php3 for an animation that illustrates a mopitt swath.
See “MODIS Scanning Swath” at http://terra.nasa.gov/Gallery/browse.php3 for an animation that illustrates a modis swath.
See “Combined Swaths” at http://terra.nasa.gov/Gallery/browse.php3 for an animation illustrating swath all.
HDF-EOS Swath

Data fields

“Brightness Temperature”

Map1
DataDimension: “Track”
Geodimension: “Geotrack”
Offset: 1
Increment: 2

Dimension
Name: Track
Size: 42

Dimension
Name: Scan
Size: 16

Dimension
Name: Geotrack
Size: 21

Geolocation fields

“Time”

“Latitude”

“Longitude”
Datatypes

- Standard integer & float
- User-definable scalars (e.g. 13-bit integer)
- Variable length types (e.g. strings)
- Pointers - references to objects/regions
- Enumeration - nominal
- Compound types (records)
Physical organization

• File formats
 – Standard formats
 – Home-grown
 – Questions of simplicity
 – Files need not be files
Files need not be files

A file handle accesses storage through one or more layers of low-level file drivers.
Physical organization

• Storage options
 – Text vs. binary
 – Self-describing vs simple
 – Random vs. sequential access
 – Storage structures
Interesting Storage Options

- **Chunked array**
 - Better subsetting access time; extendable

- **compressed**
 - Improves storage efficiency, transmission speed

- **extendable**
 - Supports record view

- **split file**
 - Metadata in one file, raw data in another.

Dataset “Fred”

File A

File B

Data for Fred

Metadata for Fred
Example of layers: ASCI DMF

- Objectives
 - Sound data model with robust data abstractions
 - Computational mechanics data: meshes & fields
 - Based on mathematical field of fiber bundles
 - Common format allows common tools & sharing
 - Common API shield apps from model complexities
Accessing Scientific Data
Accessing scientific data

- Partial access
 - When you only want part of the data
 - When you don't have enough space
 - When you don't have enough time

- Transformations
 - Data types
 - Data objects at all levels
 - mesh --> image
 - subsetting
(a) A hyperslab from one 2D array to corner of another 2D array

(b) A regular series of blocks from a 2D array to a contiguous sequence at a certain offset in a 1D array

(c) A sequence of points from a 2D array to a sequence of points in a 3D array.

(d) Union of hyperslabs in file to union of hyperslabs in memory. Number of elements must be equal.
Accessing scientific data

- Indirect access
 - index or other structure points to data
- Fusion
 - combining two or more datasets to produce another dataset
- Remote vs. local
- Parallel access
Cross-project collections

• Can be organized (or not) in many ways
• Ad hoc
 – Each research team does its own thing
 – Individual files and formats
• Database
 – Single schema fits all
 – Or distributed DB
• Federation
 – Different collections, common semantics
 – Common format, or objects
EOSDIS Processing Levels

- **Level 0**: Raw instrument data time ordered, duplications removed, original restored
- **Level 1A**: Radiometrically Corrected
 - Reversibly transformed L0 data, located to coordinate system + Ancillary + Engineering
- **Level 1B**: Environmental variables, same location as L1
- **Level 3**: Data or environmental variables, spatial and/or temporal resampling
- **Level 4**: Model output
EOSDIS Example: Library Analogy

<table>
<thead>
<tr>
<th>EOSDIS</th>
<th>LIBRARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granule</td>
<td>Granule Metadata</td>
</tr>
<tr>
<td>Book</td>
<td>Index Card</td>
</tr>
<tr>
<td>Collection</td>
<td>Collection Metadata</td>
</tr>
<tr>
<td>Book Collection</td>
<td>Collection Indexing</td>
</tr>
<tr>
<td>Catalogue</td>
<td>Catalogue Interoperability Protocol</td>
</tr>
<tr>
<td>Catalogue</td>
<td>Catalogue Indexing</td>
</tr>
</tbody>
</table>
Example Categories for Granule- and Collection-Level Metadata

<table>
<thead>
<tr>
<th>Granule</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform, Instrument, Sensor</td>
<td>Platform, Instrument, Sensor</td>
</tr>
<tr>
<td>Spatial and Temporal</td>
<td>Delivered Algorithm Package</td>
</tr>
<tr>
<td>Orbit Parameters</td>
<td>Guide</td>
</tr>
<tr>
<td>Browse</td>
<td>Bibliographic Reference</td>
</tr>
<tr>
<td>QA Data Statistics</td>
<td>Papers/Documents</td>
</tr>
<tr>
<td>Production History</td>
<td>Keyword</td>
</tr>
</tbody>
</table>
Object Based
Digital Library Architecture

User Interface

Meta-data query

Result documents

Meta-data manipulation services

DL Middleware

Data object (text,image)

Request for data (X.509)

Data Handling System

Archive HPSS

Searchable Metadata
(fields from XML/SGML)
SDSC Storage Resource Broker & Meta-data Catalog

MCAT

Resource

User

Dublin Core

Application Meta-data

Application

File SID

DBLobj SID

Obj SID

SRB

ADSM

HPSS

DB2

Oracle

Unix
Thank you